Dynamics of the hydrocarbon-degrading Cycloclasticus bacteria during mesocosm-simulated oil spills.

نویسندگان

  • Eva Teira
  • Itziar Lekunberri
  • Josep M Gasol
  • Mar Nieto-Cid
  • Xosé Antón Alvarez-Salgado
  • Francisco G Figueiras
چکیده

We used catalysed reported deposition - fluorescence in situ hybridization (CARD-FISH) to analyse changes in the abundance of the bacterial groups Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes, and of hydrocarbon-degrading Cycloclasticus bacteria in mesocosms that had received polycyclic aromatic hydrocarbons (PAHs) additions. The effects of PAHs were assessed under four contrasting hydrographic conditions in the coastal upwelling system of the Rías Baixas: winter mixing, spring bloom, summer stratification and autumn upwelling. We used realistic additions of water soluble PAHs (approximately 20-30 microg l(-1) equivalent of chrysene), but during the winter period we also investigated the effect of higher PAHs concentrations (10-80 microg l(-1) chrysene) on the bacterial community using microcosms. The most significant change observed was a significant reduction (68 +/- 5%) in the relative abundance of Alphaproteobacteria. The magnitude of the response of Cycloclasticus bacteria (positive with probe CYPU829) to PAHs additions varied depending on the initial environmental conditions, and on the initial concentration of added PAHs. Our results clearly show that bacteria of the Cycloclasticus group play a major role in low molecular weight PAHs biodegradation in this planktonic ecosystem. Their response was stronger in colder waters, when their background abundance was also higher. During the warm periods, the response of Cycloclasticus was limited, possibly due to both, a lower bioavailability of PAHs caused by abiotic factors (solar radiation, temperature), and by inorganic nutrient limitation of bacterial growth.

منابع مشابه

Variation of Oxygenation Conditions on a Hydrocarbonoclastic Microbial Community Reveals Alcanivorax and Cycloclasticus Ecotypes

Deciphering the ecology of marine obligate hydrocarbonoclastic bacteria (MOHCB) is of crucial importance for understanding their success in occupying distinct niches in hydrocarbon-contaminated marine environments after oil spills. In marine coastal sediments, MOHCB are particularly subjected to extreme fluctuating conditions due to redox oscillations several times a day as a result of mechanic...

متن کامل

Cultivation-dependent and cultivation-independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments

Marine hydrocarbon-degrading bacteria perform a fundamental role in the biodegradation of crude oil and its petrochemical derivatives in coastal and open ocean environments. However, there is a paucity of knowledge on the diversity and function of these organisms in deep-sea sediment. Here we used stable-isotope probing (SIP), a valuable tool to link the phylogeny and function of targeted micro...

متن کامل

Succession of hydrocarbon-degrading bacteria in the aftermath of the deepwater horizon oil spill in the gulf of Mexico.

The Deepwater Horizon oil spill produced large subsurface plumes of dispersed oil and gas in the Gulf of Mexico that stimulated growth of psychrophilic, hydrocarbon degrading bacteria. We tracked succession of plume bacteria before, during and after the 83-day spill to determine the microbial response and biodegradation potential throughout the incident. Dominant bacteria shifted substantially ...

متن کامل

Obligate oil-degrading marine bacteria.

Over the past few years, a new and ecophysiologically unusual group of marine hydrocarbon-degrading bacteria - the obligate hydrocarbonoclastic bacteria (OHCB) - has been recognized and shown to play a significant role in the biological removal of petroleum hydrocarbons from polluted marine waters. The introduction of oil or oil constituents into seawater leads to successive blooms of a relativ...

متن کامل

Simulation of Deepwater Horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders.

The Deepwater Horizon (DWH) accident released an estimated 4.1 million barrels of oil and 1010 mol of natural gas into the Gulf of Mexico, forming deep-sea plumes of dispersed oil droplets and dissolved gases that were largely degraded by bacteria. During the course of this 3-mo disaster a series of different bacterial taxa were enriched in succession within deep plumes, but the metabolic capab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Environmental microbiology

دوره 9 10  شماره 

صفحات  -

تاریخ انتشار 2007